Key Management - From Cryptoprocessors to OASIS

Christian Cachin

IBM Zurich Research Laboratory

28 April 2009

Warning

This presentation contains explicit exposure to applications, standards, and the commercial world.

Key management?

Today: Proprietary key mgmt.

Future: Standardized key mgmt. across enterprise

OASIS Key Management Interoperability Protocol (KMIP)

- OASIS...? XML
- Client-server protocol
- Defines objects with attributes, plus operations
 - Objects: symmetric keys, public/private keys, certificates, threshold key-shares ...
 - Attributes: identifiers, type, length, lifecycle-state, lifecycle dates, links to other objects ...
 - Operations: create, register, attribute handling ...

OASIS KMIP

- Draft for KMIP V1 prepared by
 - Brocade, HP, IBM, LSI, NetApp, RSA-EMC, Seagate, nCipher/Thales
- OASIS KMIP TC formed in Apr. 2009
- http://www.oasis-open.org/committees/kmip/

KMIP Operations

- Mostly standard attribute handling, except:
 - Key wrapping: encrypt a key with another key
 - Key derivation: create a symmetric key from an existing one using a PRF
- Access control on keys depends on their cryptographic dependencies:
 - Wrapping key leaks wrapped keys
 - Parent key leaks derived keys

Cryptographic problems

- Key wrapping = circular encryption
 - → PK-encryption secure against key-dependent CCA [Camenisch, Chandran, Shoup; Eurocrypt 2009]
- Access control to keys without "API attacks"
 - Same problem exists in cryptoprocessors APIs (IBM 4758, PKCS #11 ...)
 - Attacks by Andreson, Bond, Clulow ...
 - → Secure cryptographic token interface [Cachin & Chandran; CSF-22, 2009]

Cryptoprocessors

Cryptographic tokens Hardware security modules (HSM)

Commercial cryptoprocessors

HP Atalla Ax150

IBM 4764

nCipher/Thales netHSM

Infineon TPM

Tamper-resistant and -responsive according to FIPS 140-2, up to Level 4

Follow up

- A Public-Key Encryption Scheme Secure against Key-Dependent Chosen-Plaintext and Adaptive Chosen-Ciphertext Attacks
 - Jan Camenisch, Nishanth Chandran, Victor Shoup Eurocrypt 2009 (tomorrow, 10h05)
- A Secure Cryptographic Token Interface
 - Christian Cachin & Nishanth Chandran
 Computer Security Foundations Symposium 2009
 (July 8-10)